Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sum of Squares Decompositions of Polynomials over their Gradient Ideals with Rational Coefficients (2107.11825v1)

Published 25 Jul 2021 in cs.SC and math.OC

Abstract: Assessing non-negativity of multivariate polynomials over the reals, through the computation of {\em certificates of non-negativity}, is a topical issue in polynomial optimization. This is usually tackled through the computation of {\em sums-of-squares decompositions} which rely on efficient numerical solvers for semi-definite programming. This method faces two difficulties. The first one is that the certificates obtained this way are {\em approximate} and then non-exact. The second one is due to the fact that not all non-negative polynomials are sums-of-squares. In this paper, we build on previous works by Parrilo, Nie, Demmel and Sturmfels who introduced certificates of non-negativity modulo {\em gradient ideals}. We prove that, actually, such certificates can be obtained {\em exactly}, over the rationals if the polynomial under consideration has rational coefficients and we provide {\em exact} algorithms to compute them. We analyze the bit complexity of these algorithms and deduce bit size bounds of such certificates.

Citations (7)

Summary

We haven't generated a summary for this paper yet.