2000 character limit reached
A cubic ring of integers with the smallest Pythagoras number (2107.11772v1)
Published 25 Jul 2021 in math.NT
Abstract: We prove that the ring of integers in the totally real cubic subfield $K{(49)}$ of the cyclotomic field $\mathbb{Q}(\zeta_7)$ has Pythagoras number equal to $4$. This is the smallest possible value for a totally real number field of odd degree. Moreover, we determine which numbers are sums of integral squares in this field, and use this knowledge to construct a diagonal universal quadratic form in five variables.