Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentiable Allophone Graphs for Language-Universal Speech Recognition (2107.11628v1)

Published 24 Jul 2021 in cs.CL, cs.SD, and eess.AS

Abstract: Building language-universal speech recognition systems entails producing phonological units of spoken sound that can be shared across languages. While speech annotations at the language-specific phoneme or surface levels are readily available, annotations at a universal phone level are relatively rare and difficult to produce. In this work, we present a general framework to derive phone-level supervision from only phonemic transcriptions and phone-to-phoneme mappings with learnable weights represented using weighted finite-state transducers, which we call differentiable allophone graphs. By training multilingually, we build a universal phone-based speech recognition model with interpretable probabilistic phone-to-phoneme mappings for each language. These phone-based systems with learned allophone graphs can be used by linguists to document new languages, build phone-based lexicons that capture rich pronunciation variations, and re-evaluate the allophone mappings of seen language. We demonstrate the aforementioned benefits of our proposed framework with a system trained on 7 diverse languages.

Citations (11)

Summary

We haven't generated a summary for this paper yet.