Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projectively enriched symmetry and topology in acoustic crystals (2107.11564v1)

Published 24 Jul 2021 in cond-mat.mes-hall and physics.app-ph

Abstract: Symmetry plays a key role in modern physics, as manifested in the revolutionary topological classification of matter in the past decade. So far, we seem to have a complete theory of topological phases from internal symmetries as well as crystallographic symmetry groups. However, an intrinsic element, i.e., the gauge symmetry in physical systems, has been overlooked in the current framework. Here, we show that the algebraic structure of crystal symmetries can be projectively enriched due to the gauge symmetry, which subsequently gives rise to new topological physics never witnessed under ordinary symmetries. We demonstrate the idea by theoretical analysis, numerical simulation, and experimental realization of a topological acoustic lattice with projective translation symmetries under a $Z_2$ gauge field, which exhibits unique features of rich topologies, including a single Dirac point, M\"{o}bius topological insulator and graphene-like semimetal phases on a rectangular lattice. Our work reveals the impact when gauge and crystal symmetries meet together with topology, and opens the door to a vast unexplored land of topological states by projective symmetries.

Summary

We haven't generated a summary for this paper yet.