Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Robust Partial Correlation-based Screening Approach (2107.11538v1)

Published 24 Jul 2021 in stat.ME, math.ST, and stat.TH

Abstract: As a computationally fast and working efficient tool, sure independence screening has received much attention in solving ultrahigh dimensional problems. This paper contributes two robust sure screening approaches that simultaneously take into account heteroscedasticity, outliers, heavy-tailed distribution, continuous or discrete response, and confounding effect, from the perspective of model-free. First, we define a robust correlation measure only using two random indicators, and introduce a screener using that correlation. Second, we propose a robust partial correlation-based screening approach when an exposure variable is available. To remove the confounding effect of the exposure on both response and each covariate, we use a nonparametric regression with some specified loss function. More specifically, a robust correlation-based screening method (RC-SIS) and a robust partial correlation-based screening framework (RPC-SIS) including two concrete screeners: RPC-SIS(L2) and RPC-SIS(L1), are formed. Third, we establish sure screening properties of RC-SIS for which the response variable can be either continuous or discrete, as well as those of RPC-SIS(L2) and RPC-SIS(L1) under some regularity conditions. Our approaches are essentially nonparametric, and perform robustly for both the response and the covariates. Finally, extensive simulation studies and two applications are carried out to demonstrate the superiority of our proposed approaches.

Summary

We haven't generated a summary for this paper yet.