Papers
Topics
Authors
Recent
Search
2000 character limit reached

Plinko: Eliciting beliefs to build better models of statistical learning and mental model updating

Published 23 Jul 2021 in q-bio.NC, cs.AI, and q-bio.QM | (2107.11477v2)

Abstract: Prior beliefs are central to Bayesian accounts of cognition, but many of these accounts do not directly measure priors. More specifically, initial states of belief heavily influence how new information is assumed to be utilized when updating a particular model. Despite this, prior and posterior beliefs are either inferred from sequential participant actions or elicited through impoverished means. We had participants play a version of the game "Plinko", to first elicit individual participant priors in a theoretically agnostic manner. Subsequent learning and updating of participant beliefs was then directly measured. We show that participants hold a variety of priors that cluster around prototypical probability distributions that in turn influence learning. In follow-up experiments we show that participant priors are stable over time and that the ability to update beliefs is influenced by a simple environmental manipulation (i.e. a short break). This data reveals the importance of directly measuring participant beliefs rather than assuming or inferring them as has been widely done in the literature to date. The Plinko game provides a flexible and fecund means for examining statistical learning and mental model updating.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.