Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Bilingual Conversational Characteristics for Neural Chat Translation (2107.11164v1)

Published 23 Jul 2021 in cs.CL

Abstract: Neural chat translation aims to translate bilingual conversational text, which has a broad application in international exchanges and cooperation. Despite the impressive performance of sentence-level and context-aware Neural Machine Translation (NMT), there still remain challenges to translate bilingual conversational text due to its inherent characteristics such as role preference, dialogue coherence, and translation consistency. In this paper, we aim to promote the translation quality of conversational text by modeling the above properties. Specifically, we design three latent variational modules to learn the distributions of bilingual conversational characteristics. Through sampling from these learned distributions, the latent variables, tailored for role preference, dialogue coherence, and translation consistency, are incorporated into the NMT model for better translation. We evaluate our approach on the benchmark dataset BConTrasT (English-German) and a self-collected bilingual dialogue corpus, named BMELD (English-Chinese). Extensive experiments show that our approach notably boosts the performance over strong baselines by a large margin and significantly surpasses some state-of-the-art context-aware NMT models in terms of BLEU and TER. Additionally, we make the BMELD dataset publicly available for the research community.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yunlong Liang (33 papers)
  2. Fandong Meng (174 papers)
  3. Yufeng Chen (58 papers)
  4. Jinan Xu (64 papers)
  5. Jie Zhou (687 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.