Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A priori and a posteriori error estimates for the Deep Ritz method applied to the Laplace and Stokes problem (2107.11035v4)

Published 23 Jul 2021 in math.NA and cs.NA

Abstract: We analyze neural network solutions to partial differential equations obtained with Physics Informed Neural Networks. In particular, we apply tools of classical finite element error analysis to obtain conclusions about the error of the Deep Ritz method applied to the Laplace and the Stokes equations. Further, we develop an a posteriori error estimator for neural network approximations of partial differential equations. The proposed approach is based on the dual weighted residual estimator. It is destined to serve as a stopping criterion that guarantees the accuracy of the solution independently of the design of the neural network training. The result is equipped with computational examples for Laplace and Stokes problems.

Citations (14)

Summary

We haven't generated a summary for this paper yet.