Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rheology of a dilute binary mixture of inertial suspension under simple shear flow (2107.10522v3)

Published 22 Jul 2021 in cond-mat.soft and cond-mat.stat-mech

Abstract: The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation. The effect of the surrounding viscous gas on the solid particles is accounted for by means of a deterministic viscous drag force plus a stochastic Langevin-like term defined in terms of the environmental temperature $T_\text{env}$. Grad's moment method is employed to determine the temperature ratio and the pressure tensor in terms of the coefficients of restitution, concentration, the masses and diameters of the components of the mixture, and the environmental temperature. Analytical results are compared against event-driven Langevin simulations for mixtures of hard spheres with the same mass density $m_1/m_2=(\sigma{(1)}/\sigma{(2)})3$, $m_i$ and $\sigma{(1)}$ being the mass and diameter, respectively, of the species $i$. It is confirmed that the theoretical predictions agree with simulations of various size ratios $\sigma{(1)}/\sigma{(2)}$ and for elastic and inelastic collisions in the wide range of parameters' space. It is remarkable that the temperature ratio $T_1/T_2$ and the viscosity ratio $\eta_1/\eta_2$ ($\eta_i$ being the partial contribution of the species $i$ to the total shear viscosity $\eta=\eta_1+\eta_2$) discontinuously change at a certain shear rate as the size ratio increases; this feature (which is expected to occur in the thermodynamic limit) cannot be completely captured by simulations due to small system size. In addition, a Bhatnagar--Gross--Krook (BGK)-type kinetic model adapted to mixtures of inelastic hard spheres is exactly solved when $T_\text{env}$ is much smaller than the kinetic temperature $T$. A comparison between the velocity distribution functions obtained from Grad's method, BGK model, and simulations is carried out.

Summary

We haven't generated a summary for this paper yet.