Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-performance low-complexity error pattern generation for ORBGRAND decoding (2107.10517v2)

Published 22 Jul 2021 in cs.IT and math.IT

Abstract: Guessing Random Additive Noise Decoding (GRAND) is a recently proposed decoding method searching for the error pattern applied to the transmitted codeword. Ordered reliability bit GRAND (ORBGRAND) uses soft channel information to reorder entries of error patterns, generating them according to a fixed schedule, i.e. their logistic weight. In this paper, we show that every good ORBGRAND scheduling should follow an universal partial order, and we present an algorithm to generate the logistic weight order accordingly. We then propose an improved error pattern schedule that can improve the performance of ORBGRAND of 0.5dB at a block error rate (BLER) of $10{-5}$, with increasing gains as the BLER decreases. This schedule can be closely approximated with a low-complexity generation algorithm that is shown to incur no BLER degradation.

Citations (23)

Summary

We haven't generated a summary for this paper yet.