Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modulus of continuity of the quantum $f$-entropy with respect to the trace distance (2107.10112v2)

Published 21 Jul 2021 in quant-ph, cs.IT, math-ph, math.IT, and math.MP

Abstract: A well-known result due to Fannes is a certain upper bound on the modulus of continuity of the von Neumann entropy with respect to the trace distance between density matrices; this distance is the maximum probability of distinguishing between the corresponding quantum states. Much more recently, Audenaert obtained an exact expression of this modulus of continuity. In the present note, Audenaert's result is extended to a broad class of entropy functions indexed by arbitrary continuous convex functions $f$ in place of the Shannon--von Neumann function $x\mapsto x\log_2x$. The proof is based on the Schur majorization.

Citations (2)

Summary

We haven't generated a summary for this paper yet.