Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hilbert--Schmidt regularity of symmetric integral operators on bounded domains with applications to SPDE approximations (2107.10104v3)

Published 21 Jul 2021 in math.PR, cs.NA, and math.NA

Abstract: Regularity estimates for an integral operator with a symmetric continuous kernel on a convex bounded domain are derived. The covariance of a mean-square continuous random field on the domain is an example of such an operator. The estimates are of the form of Hilbert--Schmidt norms of the integral operator and its square root, composed with fractional powers of an elliptic operator equipped with homogeneous boundary conditions of either Dirichlet or Neumann type. These types of estimates, which couple the regularity of the driving noise with the properties of the differential operator, have important implications for stochastic partial differential equations on bounded domains as well as their numerical approximations. The main tools used to derive the estimates are properties of reproducing kernel Hilbert spaces of functions on bounded domains along with Hilbert--Schmidt embeddings of Sobolev spaces. Both non-homogeneous and homogeneous kernels are considered. In the latter case, results in a general Schatten class norm are also provided. Important examples of homogeneous kernels covered by the results of the paper include the class of Mat\'ern kernels.

Citations (5)

Summary

We haven't generated a summary for this paper yet.