Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation (2107.09600v3)

Published 20 Jul 2021 in cs.CV and cs.AI

Abstract: Unsupervised domain adaptation (UDA) for semantic segmentation aims to adapt a segmentation model trained on the labeled source domain to the unlabeled target domain. Existing methods try to learn domain invariant features while suffering from large domain gaps that make it difficult to correctly align discrepant features, especially in the initial training phase. To address this issue, we propose a novel Dual Soft-Paste (DSP) method in this paper. Specifically, DSP selects some classes from a source domain image using a long-tail class first sampling strategy and softly pastes the corresponding image patch on both the source and target training images with a fusion weight. Technically, we adopt the mean teacher framework for domain adaptation, where the pasted source and target images go through the student network while the original target image goes through the teacher network. Output-level alignment is carried out by aligning the probability maps of the target fused image from both networks using a weighted cross-entropy loss. In addition, feature-level alignment is carried out by aligning the feature maps of the source and target images from student network using a weighted maximum mean discrepancy loss. DSP facilitates the model learning domain-invariant features from the intermediate domains, leading to faster convergence and better performance. Experiments on two challenging benchmarks demonstrate the superiority of DSP over state-of-the-art methods. Code is available at \url{https://github.com/GaoLii/DSP}.

Citations (78)

Summary

We haven't generated a summary for this paper yet.