Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On freely quasi-infinitely divisible distributions (2107.09473v2)

Published 20 Jul 2021 in math.PR

Abstract: Inspired by the notion of quasi-infinite divisibility (QID), we introduce and study the class of freely quasi-infinitely divisible (FQID) distributions on $\mathbb{R}$, i.e. distributions which admit the free L\'{e}vy-Khintchine-type representation with signed L\'{e}vy measure. We prove several properties of the FQID class, some of them in contrast to those of the QID class. For example, a FQID distribution may have negative Gaussian part, and the total mass of its signed L\'{e}vy measure may be negative. Finally, we extend the Bercovici-Pata bijection, providing a characteristic triplet, with the L\'{e}vy measure having nonzero negative part, which is at the same time classical and free characteristic triplet.

Summary

We haven't generated a summary for this paper yet.