Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability of cycles in a game of Rock-Scissors-Paper-Lizard-Spock (2107.09383v3)

Published 20 Jul 2021 in math.DS

Abstract: We study a system of ordinary differential equations in R5 that is used as a model both in population dynamics and in game theory, and is known to exhibit a heteroclinic network consisting in the union of four types of elementary heteroclinic cycles. We show the asymptotic stability of the network for parameter values in a range compatible with both population and game dynamics. We obtain estimates of the relative attractiveness of each one of the cycles by computing their stability indices. For the parameter values ensuring the asymptotic stability of the network we relate the attractiveness properties of each cycle to the others. In particular, for three of the cycles we show that if one of them has a weak form of attractiveness, then the other two are completely unstable. We also show the existence of an open region in parameter space where all four cycles are completely unstable and the network is asymptotically stable, giving rise to intricate dynamics that has been observed numerically by other authors.

Citations (10)

Summary

We haven't generated a summary for this paper yet.