Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic Escape of Spurious Critical Points on the Low-rank Matrix Manifold (2107.09207v2)

Published 20 Jul 2021 in math.OC, cs.IT, cs.LG, math.IT, and stat.ML

Abstract: We show that on the manifold of fixed-rank and symmetric positive semi-definite matrices, the Riemannian gradient descent algorithm almost surely escapes some spurious critical points on the boundary of the manifold. Our result is the first to partially overcome the incompleteness of the low-rank matrix manifold without changing the vanilla Riemannian gradient descent algorithm. The spurious critical points are some rank-deficient matrices that capture only part of the eigen components of the ground truth. Unlike classical strict saddle points, they exhibit very singular behavior. We show that using the dynamical low-rank approximation and a rescaled gradient flow, some of the spurious critical points can be converted to classical strict saddle points in the parameterized domain, which leads to the desired result. Numerical experiments are provided to support our theoretical findings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.