Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polyadic braid operators and higher braiding gates (2107.08789v1)

Published 7 Jul 2021 in quant-ph, cs.IT, hep-th, math-ph, math.IT, and math.MP

Abstract: Higher braiding gates, a new kind of quantum gate, are introduced. These are matrix solutions of the polyadic braid equations (which differ from the generalized Yang-Baxter equations). Such gates support a special kind of multi-qubit entanglement which can speed up key distribution and accelerate the execution of algorithms. Ternary braiding gates acting on three qubit states are studied in detail. We also consider exotic non-invertible gates which can be related to qubit loss, and define partial identities (which can be orthogonal), partial unitarity, and partially bounded operators (which can be non-invertible). We define two classes of matrices, the star and circle types, and find that the magic matrices (connected with the Cartan decomposition) belong to the star class. The general algebraic structure of the classes introduced here is described in terms of semigroups, ternary and 5-ary groups and modules. The higher braid group and its representation by higher braid operators are given. Finally, we show that for each multi-qubit state there exist higher braiding gates which are not entangling, and the concrete conditions to be non-entangling are given for the binary and ternary gates discussed.

Citations (1)

Summary

We haven't generated a summary for this paper yet.