Papers
Topics
Authors
Recent
2000 character limit reached

Inverse Problem of Nonlinear Schrödinger Equation as Learning of Convolutional Neural Network

Published 19 Jul 2021 in math.NA, cs.LG, and cs.NA | (2107.08593v1)

Abstract: In this work, we use an explainable convolutional neural network (NLS-Net) to solve an inverse problem of the nonlinear Schr\"odinger equation, which is widely used in fiber-optic communications. The landscape and minimizers of the non-convex loss function of the learning problem are studied empirically. It provides a guidance for choosing hyper-parameters of the method. The estimation error of the optimal solution is discussed in terms of expressive power of the NLS-Net and data. Besides, we compare the performance of several training algorithms that are popular in deep learning. It is shown that one can obtain a relatively accurate estimate of the considered parameters using the proposed method. The study provides a natural framework of solving inverse problems of nonlinear partial differential equations with deep learning.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.