Papers
Topics
Authors
Recent
2000 character limit reached

Ghosts and congruences for $p^s$-approximations of hypergeometric periods

Published 18 Jul 2021 in math.NT, math-ph, math.AG, math.CA, math.CO, and math.MP | (2107.08548v3)

Abstract: We prove general Dwork-type congruences for constant terms attached to tuples of Laurent polynomials. We apply this result to establishing arithmetic and $p$-adic analytic properties of functions originating from polynomial solutions modulo $ps$ of hypergeometric and KZ equations, solutions which come as coefficients of master polynomials and whose coefficients are integers. As an application we show that the simplest example of a $p$-adic KZ connection has an invariant line subbundle while its complex analog has no nontrivial subbundles due to the irreducibility of the monodromy group.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.