Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditioning by Projection for the Sampling from Prior Gaussian Distributions (2107.08494v1)

Published 18 Jul 2021 in math.NA and cs.NA

Abstract: In this work we are interested in the (ill-posed) inverse problem for absolute permeability characterization that arises in predictive modeling of porous media flows. We consider a Bayesian statistical framework with a preconditioned Markov Chain Monte Carlo (MCMC) algorithm for the solution of the inverse problem. Reduction of uncertainty can be accomplished by incorporating measurements at sparse locations (static data) in the prior distribution. We present a new method to condition Gaussian fields (the log of permeability fields) to available sparse measurements. A truncated Karhunen-Lo`eve expansion (KLE) is used for dimension reduction. In the proposed method the imposition of static data is made through the projection of a sample (expressed as a vector of independent, identically distributed normal random variables) onto the nullspace of a data matrix, that is defined in terms of the KLE. The numerical implementation of the proposed method is straightforward. Through numerical experiments for a model of second-order elliptic equation, we show that the proposed method in multi-chain studies converges much faster than the MCMC method without conditioning. These studies indicate the importance of conditioning in accelerating the MCMC convergence.

Citations (1)

Summary

We haven't generated a summary for this paper yet.