Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scaling effects on the periodic homogenization of a reaction-diffusion-convection problem posed in homogeneous domains connected by a thin composite layer (2107.08448v1)

Published 18 Jul 2021 in math.AP

Abstract: We study the question of periodic homogenization of a variably scaled reaction-diffusion problem with non-linear drift posed for a domain crossed by a flat composite thin layer. The structure of the non-linearity in the drift was obtained in earlier works as hydrodynamic limit of a totally asymmetric simple exclusion process (TASEP) process for a population of interacting particles crossing a domain with obstacle. Using energy-type estimates as well as concepts like thin-layer convergence and two-scale convergence, we derive the homogenized evolution equation and the corresponding effective model parameters for a regularized problem. Special attention is paid to the derivation of the effective transmission conditions across the separating limit interface in essentially two different situations: (i) finitely thin layer and (ii) infinitely thin layer. This study should be seen as a preliminary step needed for the investigation of averaging fast non-linear drifts across material interfaces -- a topic with direct applications in the design of thin composite materials meant to be impenetrable to high-velocity impacts.

Summary

We haven't generated a summary for this paper yet.