Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing Online Engagement with Disinformation and Conspiracies in the 2020 U.S. Presidential Election (2107.08319v2)

Published 17 Jul 2021 in cs.SI, cs.CY, and cs.LG

Abstract: Identifying and characterizing disinformation in political discourse on social media is critical to ensure the integrity of elections and democratic processes around the world. Persistent manipulation of social media has resulted in increased concerns regarding the 2020 U.S. Presidential Election, due to its potential to influence individual opinions and social dynamics. In this work, we focus on the identification of distorted facts, in the form of unreliable and conspiratorial narratives in election-related tweets, to characterize discourse manipulation prior to the election. We apply a detection model to separate factual from unreliable (or conspiratorial) claims analyzing a dataset of 242 million election-related tweets. The identified claims are used to investigate targeted topics of disinformation, and conspiracy groups, most notably the far-right QAnon conspiracy group. Further, we characterize account engagements with unreliable and conspiracy tweets, and with the QAnon conspiracy group, by political leaning and tweet types. Finally, using a regression discontinuity design, we investigate whether Twitter's actions to curb QAnon activity on the platform were effective, and how QAnon accounts adapt to Twitter's restrictions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Karishma Sharma (11 papers)
  2. Emilio Ferrara (197 papers)
  3. Yan Liu (420 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.