Papers
Topics
Authors
Recent
2000 character limit reached

Skellam and Time-Changed Variants of the Generalized Fractional Counting Process

Published 17 Jul 2021 in math.PR | (2107.08307v1)

Abstract: In this paper, we study a Skellam type variant of the generalized counting process (GCP), namely, the generalized Skellam process. Some of its distributional properties such as the probability mass function, probability generating function, mean, variance and covariance are obtained. Its fractional version, namely, the generalized fractional Skellam process (GFSP) is considered by time-changing it with an independent inverse stable subordinator. It is observed that the GFSP is a Skellam type version of the generalized fractional counting process (GFCP) which is a fractional variant of the GCP. It is shown that the one-dimensional distributions of the GFSP are not infinitely divisible. An integral representation for its state probabilities is obtained. We establish its long-range dependence property by using its variance and covariance structure. Also, we consider two time-changed versions of the GFCP. These are obtained by time-changing the GFCP by an independent L\'evy subordinator and its inverse. Some particular cases of these time-changed processes are discussed by considering specific L\'evy subordinators.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.