On a stiff problem in two-dimensional space (2107.08242v2)
Abstract: In this paper we will study a stiff problem in two-dimensional space and especially its probabilistic counterpart. Roughly speaking, the heat equation with a parameter $\varepsilon>0$ is under consideration: [ \partial_t u\varepsilon(t,x)=\frac{1}{2}\nabla \cdot \left(\mathbf{A}\varepsilon(x)\nabla u\varepsilon(t,x) \right),\quad t\geq 0, x\in \mathbb{R}2, ] where $\mathbf{A}\varepsilon(x)=\text{Id}2$, the identity matrix, for $x\notin \Omega\varepsilon:={x=(x_1,x_2)\in \mathbb{R}2: |x_2|<\varepsilon}$ while $$\mathbf{A}\varepsilon(x):=\begin{pmatrix} a\varepsilon- & 0 \ 0 & a\shortmid_\varepsilon \end{pmatrix}$$ with two positive constants $a-_\varepsilon, a\shortmid_\varepsilon$ for $x\in \Omega_\varepsilon$. There exists a diffusion process $X\varepsilon$ on $\mathbb{R}2$ associated to this heat equation in the sense that $u\varepsilon(t,x):=\mathbf{E}xu\varepsilon(0,X_t\varepsilon)$ is its unique weak solution. Note that $\Omega_\varepsilon$ collapses to the $x_1$-axis, a barrier of zero volume, as $\varepsilon\downarrow 0$. The main purpose of this paper is to derive all possible limiting process $X$ of $X\varepsilon$ as $\varepsilon\downarrow 0$. In addition, the limiting flux $u$ of the solution $u\varepsilon$ as $\varepsilon\downarrow 0 $ and all possible boundary conditions satisfied by $u$ will be also characterized.