Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Daily Trading Volume via Various Hidden States (2107.07678v1)

Published 16 Jul 2021 in q-fin.ST and cs.CE

Abstract: Predicting intraday trading volume plays an important role in trading alpha research. Existing methods such as rolling means(RM) and a two-states based Kalman Filtering method have been presented in this topic. We extend two states into various states in Kalman Filter framework to improve the accuracy of prediction. Specifically, for different stocks we utilize cross validation and determine best states number by minimizing mean squared error of the trading volume. We demonstrate the effectivity of our method through a series of comparison experiments and numerical analysis.

Citations (3)

Summary

We haven't generated a summary for this paper yet.