Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Correlation detection in trees for planted graph alignment (2107.07623v4)

Published 15 Jul 2021 in cs.DS, cs.LG, math.PR, math.ST, stat.ML, and stat.TH

Abstract: Motivated by alignment of correlated sparse random graphs, we introduce a hypothesis testing problem of deciding whether or not two random trees are correlated. We obtain sufficient conditions under which this testing is impossible or feasible. We propose MPAlign, a message-passing algorithm for graph alignment inspired by the tree correlation detection problem. We prove MPAlign to succeed in polynomial time at partial alignment whenever tree detection is feasible. As a result our analysis of tree detection reveals new ranges of parameters for which partial alignment of sparse random graphs is feasible in polynomial time. We then conjecture that graph alignment is not feasible in polynomial time when the associated tree detection problem is impossible. If true, this conjecture together with our sufficient conditions on tree detection impossibility would imply the existence of a hard phase for graph alignment, i.e. a parameter range where alignment cannot be done in polynomial time even though it is known to be feasible in non-polynomial time.

Citations (13)

Summary

We haven't generated a summary for this paper yet.