Strong solutions to McKean-Vlasov SDEs with coefficients of Nemytskii-type (2107.07417v2)
Abstract: We study a large class of McKean-Vlasov SDEs with drift and diffusion coefficient depending on the density of the solution's time marginal laws in a Nemytskii-type of way. A McKean-Vlasov SDE of this kind arises from the study of the associated nonlinear FPKE, for which is known that there exists a bounded Sobolev-regular Schwartz-distributional solution u. Via the superposition principle, it is already known that there exists a weak solution to the McKean-Vlasov SDE with time marginal densities u. We show that there exists a strong solution the McKean-Vlasov SDE, which is unique among weak solutions with time marginal densities u. The main tool is a restricted Yamada-Watanabe theorem for SDEs, which is obtained by an observation in the proof of the classic Yamada-Watanabe theorem.