Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Refined Approximation for Euclidean k-Means (2107.07358v2)

Published 15 Jul 2021 in cs.DS and cs.CG

Abstract: In the Euclidean $k$-Means problem we are given a collection of $n$ points $D$ in an Euclidean space and a positive integer $k$. Our goal is to identify a collection of $k$ points in the same space (centers) so as to minimize the sum of the squared Euclidean distances between each point in $D$ and the closest center. This problem is known to be APX-hard and the current best approximation ratio is a primal-dual $6.357$ approximation based on a standard LP for the problem [Ahmadian et al. FOCS'17, SICOMP'20]. In this note we show how a minor modification of Ahmadian et al.'s analysis leads to a slightly improved $6.12903$ approximation. As a related result, we also show that the mentioned LP has integrality gap at least $\frac{16+\sqrt{5}}{15}>1.2157$.

Citations (14)

Summary

We haven't generated a summary for this paper yet.