Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation of spatially varying parameters with application to hyperbolic SPDEs (2107.07246v2)

Published 15 Jul 2021 in stat.ME, cs.NA, and math.NA

Abstract: Parameter estimation is a growing area of interest in statistical signal processing. Some parameters in real-life applications vary in space as opposed to those that are static. Most common methods in estimating parameters involve solving an optimization problem where the cost function is assembled variously; for example, maximum likelihood and maximum a posteriori methods. However, these methods do not have exact solutions to most real-life problems. It is for this reason that Monte Carlo methods are preferred. In this paper, we treat the estimation of parameters which vary with space. We use Metropolis-Hastings algorithm as a selection criteria for the maximum filter likelihood. Comparisons are made with the use of joint estimation of both the spatially varying parameters and the state. We illustrate the procedures employed in this paper by means of two hyperbolic SPDEs: the advection and the wave equation. The Metropolis-Hastings procedure registers better estimates.

Citations (1)

Summary

We haven't generated a summary for this paper yet.