Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Jentzsch-Theorem for Kapteyn, Neumann, and General Dirichlet Series (2107.07207v2)

Published 15 Jul 2021 in math.CV

Abstract: Comparing phase plots of truncated series solutions of Kepler's equation by Lagrange's power series with those by Bessel's Kapteyn series strongly suggest that a Jentzsch-type theorem holds true not only for the former but also for the latter series: each point of the boundary of the domain of convergence in the complex plane is a cluster point of zeros of sections of the series. We prove this result by studying properties of the growth function of a sequence of entire functions. For series, this growth function is computable in terms of the convergence abscissa of an associated general Dirichlet series. The proof then extends, besides including Jentzsch's classical result for power series, to general Dirichlet series, to Kapteyn, and to Neumann series of Bessel functions. Moreover, sections of Kapteyn and Neumann series generally exhibit zeros close to the real axis which can be explained, including their asymptotic linear density, by the theory of the distribution of zeros of entire functions.

Summary

We haven't generated a summary for this paper yet.