Papers
Topics
Authors
Recent
Search
2000 character limit reached

Additive bases of $C_3\oplus C_{3q}$

Published 14 Jul 2021 in math.CO | (2107.06976v1)

Abstract: Let $G$ be a finite abelian group and $p$ be the smallest prime dividing $|G|$. Let $S$ be a sequence over $G$. We say that $S$ is regular if for every proper subgroup $H \subsetneq G$, $S$ contains at most $|H|-1$ terms from $H$. Let $\mathsf c_0(G)$ be the smallest integer $t$ such that every regular sequence $S$ over $G$ of length $|S|\geq t$ forms an additive basis of $G$, i.e., $\sum(S)=G$. The invariant $\mathsf c_0(G)$ was first studied by Olson and Peng in 1980's, and since then it has been determined for all finite abelian groups except for the groups with rank 2 and a few groups of rank 3 or 4 with order less than $108$. In this paper, we focus on the remaining case concerning groups of rank 2. It was conjectured by the first author and Han (Int. J. Number Theory 13 (2017) 2453-2459) that $\mathsf c_0(G)=pn+2p-3$ where $G=C_p\oplus C_{pn}$ with $n\geq 3$. We confirm the conjecture for the case when $p=3$ and $n=q \,(\geq 5)$ is a prime number.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.