Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimality of the Discrete Fourier Transform for Beamspace Massive MU-MIMO Communication (2107.06953v1)

Published 14 Jul 2021 in eess.SP, cs.IT, and math.IT

Abstract: Beamspace processing is an emerging technique to reduce baseband complexity in massive multiuser (MU) multiple-input multiple-output (MIMO) communication systems operating at millimeter-wave (mmWave) and terahertz frequencies. The high directionality of wave propagation at such high frequencies ensures that only a small number of transmission paths exist between user equipments and basestation (BS). In order to resolve the sparse nature of wave propagation, beamspace processing traditionally computes a spatial discrete Fourier transform (DFT) across a uniform linear antenna array at the BS where each DFT output is associated with a specific beam. In this paper, we study optimality conditions of the DFT for sparsity-based beamspace processing with idealistic mmWave channel models and realistic channels. To this end, we propose two algorithms that learn unitary beamspace transforms using an $\ell4$-norm-based sparsity measure, and we investigate their optimality theoretically and via simulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.