Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-dimensional Precision Matrix Estimation with a Known Graphical Structure (2107.06815v1)

Published 28 Jun 2021 in math.ST, stat.ME, and stat.TH

Abstract: A precision matrix is the inverse of a covariance matrix. In this paper, we study the problem of estimating the precision matrix with a known graphical structure under high-dimensional settings. We propose a simple estimator of the precision matrix based on the connection between the known graphical structure and the precision matrix. We obtain the rates of convergence of the proposed estimators and derive the asymptotic normality of the proposed estimator in the high-dimensional setting when the data dimension grows with the sample size. Numerical simulations are conducted to demonstrate the performance of the proposed method. We also show that the proposed method outperforms some existing methods that do not utilize the graphical structure information.

Summary

We haven't generated a summary for this paper yet.