Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mismatched Binary Hypothesis Testing: Error Exponent Sensitivity (2107.06679v2)

Published 14 Jul 2021 in cs.IT and math.IT

Abstract: We study the problem of mismatched binary hypothesis testing between i.i.d. distributions. We analyze the tradeoff between the pairwise error probability exponents when the actual distributions generating the observation are different from the distributions used in the likelihood ratio test, sequential probability ratio test, and Hoeffding's generalized likelihood ratio test in the composite setting. When the real distributions are within a small divergence ball of the test distributions, we find the deviation of the worst-case error exponent of each test with respect to the matched error exponent. In addition, we consider the case where an adversary tampers with the observation, again within a divergence ball of the observation type. We show that the tests are more sensitive to distribution mismatch than to adversarial observation tampering.

Citations (10)

Summary

We haven't generated a summary for this paper yet.