Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mining Idioms in the Wild (2107.06402v1)

Published 13 Jul 2021 in cs.SE

Abstract: Existing code repositories contain numerous instances of code patterns that are idiomatic ways of accomplishing a particular programming task. Sometimes, the programming language in use supports specific operators or APIs that can express the same idiomatic imperative code much more succinctly. However, those code patterns linger in repositories because the developers may be unaware of the new APIs or have not gotten around to them. Detection of idiomatic code can also point to the need for new APIs. We share our experiences in mine idiomatic patterns from the Hack repo at Facebook. We found that existing techniques either cannot identify meaningful patterns from syntax trees or require test-suite-based dynamic analysis to incorporate semantic properties to mine useful patterns. The key insight of the approach proposed in this paper -- \emph{Jezero} -- is that semantic idioms from a large codebase can be learned from \emph{canonicalized} dataflow trees. We propose a scalable, lightweight static analysis-based approach to construct such a tree that is well suited to mine semantic idioms using nonparametric Bayesian methods. Our experiments with Jezero on Hack code shows a clear advantage of adding canonicalized dataflow information to ASTs: \emph{Jezero} was significantly more effective than a baseline that did not have the dataflow augmentation in being able to effectively find refactoring opportunities from unannotated legacy code.

Citations (4)

Summary

We haven't generated a summary for this paper yet.