Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse Contextual Bandits: Learning How Behavior Evolves over Time (2107.06317v3)

Published 13 Jul 2021 in cs.LG and stat.ML

Abstract: Understanding a decision-maker's priorities by observing their behavior is critical for transparency and accountability in decision processes, such as in healthcare. Though conventional approaches to policy learning almost invariably assume stationarity in behavior, this is hardly true in practice: Medical practice is constantly evolving as clinical professionals fine-tune their knowledge over time. For instance, as the medical community's understanding of organ transplantations has progressed over the years, a pertinent question is: How have actual organ allocation policies been evolving? To give an answer, we desire a policy learning method that provides interpretable representations of decision-making, in particular capturing an agent's non-stationary knowledge of the world, as well as operating in an offline manner. First, we model the evolving behavior of decision-makers in terms of contextual bandits, and formalize the problem of Inverse Contextual Bandits (ICB). Second, we propose two concrete algorithms as solutions, learning parametric and nonparametric representations of an agent's behavior. Finally, using both real and simulated data for liver transplantations, we illustrate the applicability and explainability of our method, as well as benchmarking and validating its accuracy.

Citations (11)

Summary

We haven't generated a summary for this paper yet.