Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maintaining $\mathsf{CMSO}_2$ properties on dynamic structures with bounded feedback vertex number (2107.06232v1)

Published 13 Jul 2021 in cs.DS, cs.DM, and cs.LO

Abstract: Let $\varphi$ be a sentence of $\mathsf{CMSO}2$ (monadic second-order logic with quantification over edge subsets and counting modular predicates) over the signature of graphs. We present a dynamic data structure that for a given graph $G$ that is updated by edge insertions and edge deletions, maintains whether $\varphi$ is satisfied in $G$. The data structure is required to correctly report the outcome only when the feedback vertex number of $G$ does not exceed a fixed constant $k$, otherwise it reports that the feedback vertex number is too large. With this assumption, we guarantee amortized update time ${\cal O}{\varphi,k}(\log n)$. By combining this result with a classic theorem of Erd\H{o}s and P\'osa, we give a fully dynamic data structure that maintains whether a graph contains a packing of $k$ vertex-disjoint cycles with amortized update time ${\cal O}_{k}(\log n)$. Our data structure also works in a larger generality of relational structures over binary signatures.

Summary

We haven't generated a summary for this paper yet.