2000 character limit reached
On string functions and double-sum formulas (2107.06225v1)
Published 13 Jul 2021 in math.NT and math.RT
Abstract: String functions are important building blocks of characters of integrable highest modules over affine Kac--Moody algebras. Kac and Peterson computed string functions for affine Lie algebras of type $A_{1}{(1)}$ in terms of Dedekind eta functions. We produce new relations between string functions by writing them as double-sums and then using certain symmetry relations. We evaluate the series using special double-sum formulas that express Hecke-type double-sums in terms of Appell--Lerch functions and theta functions, where we point out that Appell--Lerch functions are the building blocks of Ramanujan's classical mock theta functions.