Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Hat Guessing Number of Graphs

Published 13 Jul 2021 in math.CO and cs.DM | (2107.05995v2)

Abstract: The hat guessing number $HG(G)$ of a graph $G$ on $n$ vertices is defined in terms of the following game: $n$ players are placed on the $n$ vertices of $G$, each wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. In this note we construct a planar graph $G$ satisfying $HG(G)=12$, settling a problem raised in \cite{BDFGM}. We also improve the known lower bound of $(2-o(1))\log_2 n$ for the typical hat guessing number of the random graph $G=G(n,1/2)$, showing that it is at least $n{1-o(1)}$ with probability tending to $1$ as $n$ tends to infinity. Finally, we consider the linear hat guessing number of complete multipartite graphs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.