Papers
Topics
Authors
Recent
Search
2000 character limit reached

Anatomy-Constrained Contrastive Learning for Synthetic Segmentation without Ground-truth

Published 12 Jul 2021 in cs.CV, cs.AI, and eess.IV | (2107.05482v1)

Abstract: A large amount of manual segmentation is typically required to train a robust segmentation network so that it can segment objects of interest in a new imaging modality. The manual efforts can be alleviated if the manual segmentation in one imaging modality (e.g., CT) can be utilized to train a segmentation network in another imaging modality (e.g., CBCT/MRI/PET). In this work, we developed an anatomy-constrained contrastive synthetic segmentation network (AccSeg-Net) to train a segmentation network for a target imaging modality without using its ground truth. Specifically, we proposed to use anatomy-constraint and patch contrastive learning to ensure the anatomy fidelity during the unsupervised adaptation, such that the segmentation network can be trained on the adapted image with correct anatomical structure/content. The training data for our AccSeg-Net consists of 1) imaging data paired with segmentation ground-truth in source modality, and 2) unpaired source and target modality imaging data. We demonstrated successful applications on CBCT, MRI, and PET imaging data, and showed superior segmentation performances as compared to previous methods.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.