2000 character limit reached
Invariant subspaces of analytic perturbations (2107.05052v1)
Published 11 Jul 2021 in math.FA, math.CV, and math.OA
Abstract: By analytic perturbations, we refer to shifts that are finite rank perturbations of the form $M_z + F$, where $M_z$ is the unilateral shift and $F$ is a finite rank operator on the Hardy space over the open unit disc. Here shift refers to the multiplication operator $M_z$ on some analytic reproducing kernel Hilbert space. In this paper, we first isolate a natural class of finite rank operators for which the corresponding perturbations are analytic, and then we present a complete classification of invariant subspaces of those analytic perturbations. We also exhibit some instructive examples and point out several distinctive properties (like cyclicity, essential normality, hyponormality, etc.) of analytic perturbations.