Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-linear Visual Knowledge Discovery with Elliptic Paired Coordinates (2107.04974v1)

Published 11 Jul 2021 in cs.LG, cs.CV, and cs.GR

Abstract: It is challenging for humans to enable visual knowledge discovery in data with more than 2-3 dimensions with a naked eye. This chapter explores the efficiency of discovering predictive machine learning models interactively using new Elliptic Paired coordinates (EPC) visualizations. It is shown that EPC are capable to visualize multidimensional data and support visual machine learning with preservation of multidimensional information in 2-D. Relative to parallel and radial coordinates, EPC visualization requires only a half of the visual elements for each n-D point. An interactive software system EllipseVis, which is developed in this work, processes high-dimensional datasets, creates EPC visualizations, and produces predictive classification models by discovering dominance rules in EPC. By using interactive and automatic processes it discovers zones in EPC with a high dominance of a single class. The EPC methodology has been successful in discovering non-linear predictive models with high coverage and precision in the computational experiments. This can benefit multiple domains by producing visually appealing dominance rules. This chapter presents results of successful testing the EPC non-linear methodology in experiments using real and simulated data, EPC generalized to the Dynamic Elliptic Paired Coordinates (DEPC), incorporation of the weights of coordinates to optimize the visual discovery, introduction of an alternative EPC design and introduction of the concept of incompact machine learning methodology based on EPC/DEPC.

Citations (3)

Summary

We haven't generated a summary for this paper yet.