Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Concept Lengths Accelerates Concept Learning in ALC (2107.04911v3)

Published 10 Jul 2021 in cs.LG

Abstract: Concept learning approaches based on refinement operators explore partially ordered solution spaces to compute concepts, which are used as binary classification models for individuals. However, the number of concepts explored by these approaches can grow to the millions for complex learning problems. This often leads to impractical runtimes. We propose to alleviate this problem by predicting the length of target concepts before the exploration of the solution space. By these means, we can prune the search space during concept learning. To achieve this goal, we compare four neural architectures and evaluate them on four benchmarks. Our evaluation results suggest that recurrent neural network architectures perform best at concept length prediction with a macro F-measure ranging from 38% to 92%. We then extend the CELOE algorithm, which learns ALC concepts, with our concept length predictor. Our extension yields the algorithm CLIP. In our experiments, CLIP is at least 7.5 times faster than other state-of-the-art concept learning algorithms for ALC -- including CELOE -- and achieves significant improvements in the F-measure of the concepts learned on 3 out of 4 datasets. For reproducibility, we provide our implementation in the public GitHub repository at https://github.com/dice-group/LearnALCLengths.

Citations (11)

Summary

We haven't generated a summary for this paper yet.