Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds Preserving Temporal Integration Methods for Hyperbolic Conservation Laws (2107.04899v3)

Published 10 Jul 2021 in math.NA and cs.NA

Abstract: In this work, we present a modification of explicit Runge-Kutta temporal integration schemes that guarantees the preservation of any locally-defined quasiconvex set of bounds for the solution. These schemes operate on the basis of a bijective mapping between an admissible set of solutions and the real domain to strictly enforce bounds. Within this framework, we show that it is possible to recover a wide range of methods independently of the spatial discretization, including positivity preserving, discrete maximum principle satisfying, entropy dissipative, and invariant domain preserving schemes. Furthermore, these schemes are proven to recover the order of accuracy of the underlying Runge-Kutta method upon which they are built. The additional computational cost is the evaluation of two nonlinear mappings which generally have closed-form solutions. We show the utility of this approach in numerical experiments using a pseudospectral spatial discretization without any explicit shock capturing schemes for nonlinear hyperbolic problems with discontinuities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.