Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiplayer Homicidal Chauffeur Reach-Avoid Games via Guaranteed Winning Strategies (2107.04709v1)

Published 9 Jul 2021 in cs.GT and math.OC

Abstract: This paper studies a planar multiplayer Homicidal Chauffeur reach-avoid differential game, where each pursuer is a Dubins car and each evader has simple motion. The pursuers aim to protect a goal region cooperatively from the evaders. Due to the high-dimensional strategy space among pursuers, we decompose the whole game into multiple one-pursuer-one-evader subgames, each of which is solved in an analytical approach instead of solving Hamilton-Jacobi-Isaacs equations. For each subgame, an evasion region (ER) is introduced, based on which a pursuit strategy guaranteeing the winning of a simple-motion pursuer under specific conditions is proposed. Motivated by the simple-motion pursuer, a strategy for a Dubins-car pursuer is proposed when the pursuer-evader configuration satisfies separation condition (SC) and interception orientation (IO). The necessary and sufficient condition on capture radius, minimum turning radius and speed ratio to guarantee the pursuit winning is derived. When the IO is not satisfied (Non-IO), a heading adjustment pursuit strategy is proposed, and the condition to achieve IO within a finite time, is given. Then, a two-step pursuit strategy is proposed for the SC and Non-IO case. A non-convex optimization problem is introduced to give a condition guaranteeing the winning of the pursuer. A polynomial equation gives a lower bound of the non-convex problem, providing a sufficient and efficient pursuit winning condition. Finally, these pairwise outcomes are collected for the pursuer-evader matching. Simulations are provided to illustrate the theoretical results.

Citations (3)

Summary

We haven't generated a summary for this paper yet.