2000 character limit reached
Parameterized Complexity of Multi-winner Determination: More Effort Towards Fixed-Parameter Tractability (2107.04685v5)
Published 9 Jul 2021 in cs.GT and cs.MA
Abstract: We study the parameterized complexity of winner determination problems for three prevalent $k$-committee selection rules, namely the minimax approval voting (MAV), the proportional approval voting (PAV), and the Chamberlin-Courant's approval voting (CCAV). It is known that these problems are computationally hard. Although they have been studied from the parameterized complexity point of view with respect to several natural parameters, many of them turned out to be W[1]-hard or W[2]-hard. Aiming at obtaining plentiful fixed-parameter algorithms, we revisit these problems by considering more natural single parameters, combined parameters, and structural parameters.
- In: COCOON, pp. 751–763 (2018)
- Soc. Choice Welfare 48(2), 461–485 (2017)
- In: AAMAS, pp. 107–115 (2015)
- J. Artif. Intell. Res. 47, 475–519 (2013)
- Bläser, M.: Computing small partial coverings. Inf. Process. Lett. 85(6), 327–331 (2003)
- Bodlaender, H.L.: Fixed-parameter tractability of treewidth and pathwidth. In: The Multivariate Algorithmic Revolution and Beyond, pp. 196–227 (2012)
- Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1-2), 1–21 (1993)
- SIAM J. Comput. 45(2), 317–378 (2016)
- In: ICALP, pp. 544–555 (1991)
- In: AAMAS. pp. 1706–1715 (2023)
- Public Choice 132(3-4), 401–420 (2007)
- SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia, USA (1999).
- In: AAAI. pp. 1838–1845 (2021)
- Artif. Intell. 290, Nr. 103403 (2021)
- Theor. Comput. Sci. 814, 86–105 (2020)
- In: WINE, pp. 203–217 (2014)
- Cai, L.: Parameterized complexity of cardinality constrained optimization problems. Comput. J. 51(1), 102–121 (2008)
- Am. Polit. Sci. Rev. 77(3), 718–733 (1983)
- In: IJCAI, pp. 32–38 (2015)
- In: ECAI, pp. 270–275 (2012)
- Theor. Comput. Sci. 109(1-2), 49–82 (1993)
- Springer (2015).
- J. Artif. Intell. Res. 63, 495–513 (2018)
- ACM Trans. Algorithms 11(2), Nr. 13 (2014)
- Texts in Computer Science. Springer (2013)
- Theor. Comput. Sci. 141(1-2), 109–131 (1995)
- In: Complexity Theory: Current Research, pp. 191–225 (1992)
- Soc. Choice Welfare 48(3), 599–632 (2017)
- In: IJCAI, pp. 2019–2025 (2015)
- In: AAAI, pp. 661–667 (2014)
- Endriss, U. (eds.): Trends in Computational Social Choice. AI Access (2017)
- Soc. Choice Welfare 51(3), 513–550 (2018)
- In: IJCAI, pp. 250–256 (2016)
- In: AAMAS, pp. 6–14 (2017)
- J. Heuristics 24(5), 725–756 (2018)
- Tsinghua Sci. Technol. 19(4), 374–386 (2014)
- Algorithmica 80(4), 1146–1169 (2018)
- Theor. Comput. Sci. 1(3), 237–267 (1976)
- In: EUMAS, pp. 134–151 (2022)
- In: AGENTS, pp. 434–435 (1999)
- In: WADS, pp. 36–48 (2005)
- In: IJCAI, pp. 217–223 (2021)
- Kilgour, D.M.: Approval balloting for multi-winner elections. In: Laslier, J.-F., Sanver, M.R. (eds.) Handbook on Approval Voting, pp. 105–124. Springer (2010).
- In: Felsenthal, D.S., Machover, M. (eds.) Electoral Systems—Paradoxes, Assumptions, and Procedures, pp. 305–326, Springer (2012).
- Springer (1994).
- J. Algorithms 19(2), 266–281 (1995)
- Discret. Appl. Math. 278, 136–152 (2020)
- Springer (2023)
- J. Econ. Theory 192, Nr. 105173 (2021)
- LeGrand, R.: Analysis of the minimax procedure. Techical Report, Department of Computer Science and Engineering, Washington University, St. Louis, USA (2004)
- Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)
- Lin, A.P.: The complexity of manipulating k𝑘kitalic_k-approval elections. In: ICAART (2), pp. 212–218 (2011) URL http://arxiv.org/abs/1005.4159
- In: AAMAS, pp. 341–349 (2016)
- Elsevier, North Holland, Netherlands (1986)
- In: ICDT, Nr. 12 (2019)
- Algorithms Mol. Biol. 17(1), Nr. 8 (2022)
- In: AAMAS, pp. 97–105 (2015)
- Peters, D.: Single-peakedness and total unimodularity: New polynomial-time algorithms for multi-winner elections. In: AAAI, pp. 1169–1176 (2018)
- In: AAAI, pp. 594–600 (2016)
- J. Artif. Intell. Res. 68, 463–502 (2020)
- Soc. Choice Welfare 30(3), 353–362 (2008)
- In: IJCAI, pp. 1476–1481 (2007)
- J. Algorithms 7(3), 309–322 (1986)
- Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Inc., New York, USA (1986)
- Skowron, P.: FPT approximation schemes for maximizing submodular functions. Inf. Comput. 257, 65–78 (2017)
- J. Artif. Intell. Res. 60, 687–716 (2017)
- Artif. Intell. 241, 191–216 (2016)
- Theor. Comput. Sci. 569, 43–57 (2015)
- In: IJCAI, pp. 375–382 (2013)
- Thiele, T.N.: Om Flerfoldsvalg. In: Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger, pp. 415–441 (1895)
- Thorup, M.: All structured programs have small tree-width and good register allocation. Inf. Comput. 142(2), 159–181 (1998)
- van der Zanden, T.C.: Theory and practical applications of treewidth. Ph.D. thesis, Utrecht University, Netherlands (2019).
- West, D.B.: Introduction to Graph Theory. Prentice-Hall (2000)
- Genome Informatics 14, 376–377 (2003)
- Yang, Y.: A model of winners allocation. In: AAAI, pp. 5760–5767 (2021)
- Yang, Y.: On the complexity of destructive bribery in approval-based multi-winner voting. In: AAMAS, pp. 1584–1592 (2020)
- Yang, Y.: Complexity of manipulating and controlling approval-based multiwinner voting. In: IJCAI, pp. 637–643 (2019)
- Yang, Y.: On the tree representations of dichotomous preferences. In: IJCAI, pp. 644–650 (2019)
- J. Comput. Syst. Sci. 89, 432–449 (2017)
- In: AAMAS, pp. 2142–2144 (2018)
- In: IJCAI, pp. 425–431 (2013)