Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preserving Diversity when Partitioning: A Geometric Approach (2107.04674v1)

Published 9 Jul 2021 in cs.DM and cs.DS

Abstract: Diversity plays a crucial role in multiple contexts such as team formation, representation of minority groups and generally when allocating resources fairly. Given a community composed by individuals of different types, we study the problem of partitioning this community such that the global diversity is preserved as much as possible in each subgroup. We consider the diversity metric introduced by Simpson in his influential work that, roughly speaking, corresponds to the inverse probability that two individuals are from the same type when taken uniformly at random, with replacement, from the community of interest. We provide a novel perspective by reinterpreting this quantity in geometric terms. We characterize the instances in which the optimal partition exactly preserves the global diversity in each subgroup. When this is not possible, we provide an efficient polynomial-time algorithm that outputs an optimal partition for the problem with two types. Finally, we discuss further challenges and open questions for the problem that considers more than two types.

Summary

We haven't generated a summary for this paper yet.