Papers
Topics
Authors
Recent
2000 character limit reached

Quantum double aspects of surface code models

Published 25 Jun 2021 in quant-ph, math-ph, math.MP, and math.QA | (2107.04411v1)

Abstract: We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry, where $G$ is a finite group. We provide projection operators for its quasiparticles content as irreducible representations of $D(G)$ and combine this with $D(G)$-bimodule properties of open ribbon excitation spaces $L(s_0,s_1)$ to show how open ribbons can be used to teleport information between their endpoints $s_0,s_1$. We give a self-contained account that builds on earlier work but emphasises applications to quantum computing as surface code theory, including gates on $D(S_3)$. We show how the theory reduces to a simpler theory for toric codes in the case of $D( \Bbb Z_n)\cong \Bbb C\Bbb Z_n2$, including toric ribbon operators and their braiding. In the other direction, we show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$, including site actions of $D(H)$ and partial results on ribbon equivariance even when the Hopf algebra is not semisimple.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.