Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher differentiability of solutions for a class of obstacle problems with variable exponents (2107.04336v1)

Published 9 Jul 2021 in math.AP

Abstract: In this paper we prove a higher differentiability result for the solutions to a class of obstacle problems in the form \begin{equation*} \label{obst-def0} \min\left{\int_\Omega F(x,Dw) dx : w\in \mathcal{K}{\psi}(\Omega)\right} \end{equation*} where $\psi\in W{1,p(x)}(\Omega)$ is a fixed function called obstacle and $\mathcal{K}{\psi}={w \in W{1,p(x)}_{0}(\Omega)+u_0: w \ge \psi \,\, \textnormal{a.e. in $\Omega$}}$ is the class of the admissible functions, for a suitable boundary value $ u_0 $. We deal with a convex integrand $F$ which satisfies the $p(x)$-growth conditions \begin{equation*}\label{growth}|\xi|{p(x)}\le F(x,\xi)\le C(1+|\xi|{p(x)}),\quad p(x)>1 \end{equation*}

Summary

We haven't generated a summary for this paper yet.