Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Triangle Inequality for Cosine Similarity (2107.04071v1)

Published 8 Jul 2021 in cs.LG and cs.DB

Abstract: Similarity search is a fundamental problem for many data analysis techniques. Many efficient search techniques rely on the triangle inequality of metrics, which allows pruning parts of the search space based on transitive bounds on distances. Recently, Cosine similarity has become a popular alternative choice to the standard Euclidean metric, in particular in the context of textual data and neural network embeddings. Unfortunately, Cosine similarity is not metric and does not satisfy the standard triangle inequality. Instead, many search techniques for Cosine rely on approximation techniques such as locality sensitive hashing. In this paper, we derive a triangle inequality for Cosine similarity that is suitable for efficient similarity search with many standard search structures (such as the VP-tree, Cover-tree, and M-tree); show that this bound is tight and discuss fast approximations for it. We hope that this spurs new research on accelerating exact similarity search for cosine similarity, and possible other similarity measures beyond the existing work for distance metrics.

Citations (18)

Summary

We haven't generated a summary for this paper yet.